XR33180/81/83/84

3V to 5.5V, 52Mbps, TSOT23 RS-485/RS-422 Receivers with ±15kV ESD Protection

Description

The XR33180, XR33181, XR33183 and XR33184 are high performance RS-485/RS-422 receivers designed to meet the increasing system requirements found in today's high performance serial communication applications.

The receiver includes enhanced failsafe circuitry, guaranteeing a logic-high receiver output when the receiver inputs are open, shorted, or undriven. The XR33180/81/83/84 (XR3318x) receiver input impedance is at least $48k\Omega$ (1/4 unit load), allowing more than 128 devices on the bus. The bus pins are ESD protected and pass IEC61000 level 4 (\pm 15kV).

This is a wide supply (3.0V to 5.5V) device that operates at a maximum data rate of 52Mbps and comes in very small 5-pin and 6-pin TSOT23 packages, making this standalone receiver ideal for high speed point-to-point RS-485 applications where space is a concern.

The XR3318x offers several pinout options to maximize performance in different applications while maintaining a minimum pin count. The XR33180 is available in a 5-pin TSOT23 package with the receiver always enabled. The XR33181 is available in a 6-pin TSOT23 package and offers a active high receiver enable pin while the XR33183 has the same pinout but with active low enable pin. The XR33184 is available in a 6-pin TSOT23 package with a I/O logic supply pin to ease the interface to MCU's or FPGA's that run off of different supply voltages. The $\rm V_L$ supply pin allows the XR33184 to interface to other devices running off of supplies from ranging from 1.65V to $\rm V_{CC}$.

All XR3318x options operate up to a max data rate of 52Mbps, and have excellent propagation delay and skew characteristics making them a good choice for clock fanout or clock distribution systems.

FEATURES

- Max 52Mbps data rate
- Wide 3.0V to 5.5V supply operation
- Robust Electrostatic Discharge (ESD) protection for RS-485 bus pins
 - □ ±15kV human body model
 - □ ±15kV IEC61000-4-2 air discharge
 - ±8kV IEC61000-4-2 contact discharge
- Enhanced receiver failsafe protection for open, shorted, or terminated but idle data lines
- -40°C to 125°C ambient operating temperature range
- Lead-free (RoHS 6) TSOT23-5 and TSOT23-6 packaging
- Absolute minimum pin count option, XR33180 (5-pin TSOT23)
- Tri-state RO options, XR33181 and XR33183
- Adjustable I/O supply option to help interfacing to lower voltage logic, XR33184

APPLICATIONS

- Clock distribution
- Robotic control
- Space constrained systems
- Security camera networks
- Industrial and process control equipment

Typical Application

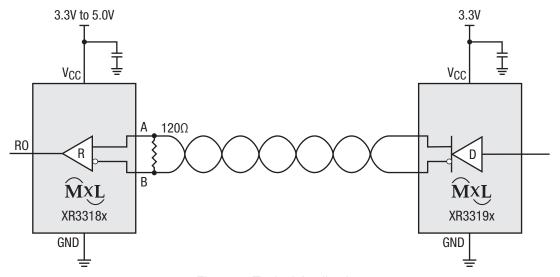


Figure 1. Typical Application

REV1C 1/12

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Maximum Rating condition for extended periods may affect device reliability and lifetime.

Supply voltage (V _{CC})0.3V to 7.0V
Junction temperature
Input Voltages
EN and $\overline{\text{EN}}$ 0.3V to 7.0V
Output Voltage
RO (XR33180/81/83)0.3V to (V _{CC} + 0.3V)
RO (XR33184)0.3V to (V _L + 0.3V)
Receiver Input Voltages
A, B±18V
Transient voltage pulse, through $100\Omega^{(1)}$ ±100V

ESD Ratings

HBM - Human Body Model (A and B pins)	±15kV
HBM - Human Body Model (all other pins)	±4kV
IEC61000-4-2 Air Gap Discharge	±15kV
IEC61000-4-2 Contact Discharge	±8kV
NOTE:	

^{1.} Refer to Figure 3.

Operating Conditions

Operating temperature range	40°C to 125°C
V _{CC} supply range	3.0V to 5.5V
Thermal Information	
5-pin TSOT23 θ_{JA}	185.5°C/W
5-pin TSOT23 θ_{JC}	61.6°C/W
6-pin TSOT23 θ_{JA}	167.3°C/W
6-pin TSOT23 θ_{JC}	61.6°C/W

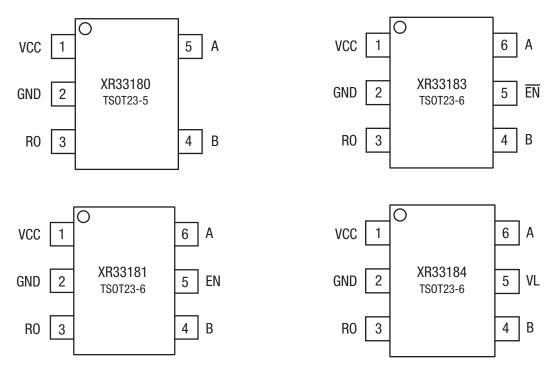
Electrical Characteristics

Specifications are at $T_A = 25^{\circ}\text{C}$, $V_{CC} = 3.0\text{V}$ to 5.5V unless otherwise noted. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}\text{C}$, and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Supply						
V _{CC}	Supply voltage range		3.0		5.5	V
VL	I/O supply voltage range	$V_L \le V_{CC}$	1.65		V _{CC}	V
I _{CC}	Supply current	No Load, XR33180/81/83/84		2.5	5	mA
IL	I/O supply	No Load, XR33184			10	μΑ
Receiver D	Receiver DC Characteristics					
V _{TH}	Receiver differential threshold voltage, $V_A - V_B$	-7V ≤ V _{CM} ≤ 12V	-200	-125	-50	mV
ΔV _{OH}	Receiver input hysteresis	V _{CM} = 0V		25		mV
R _{IN}	Receiver input resistance	-7V ≤ V _{CM} ≤ 12V	48			kΩ
	Input ourrent A and P	V _{OUT} = 12V, V _{CC} = 0V or 5.5V			250	μΑ
I _{A,B} Input current, A and B		V _{OUT} = -7V, V _{CC} = 0V or 5.5V	-200			μΑ

Electrical Characteristics

Specifications are at $T_A = 25^{\circ}C$, $V_{CC} = 3.0V$ to 5.5V unless otherwise noted. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}C$, and are provided for reference purposes only.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
Logic Inputs/C	Outputs					
V _{IH}	Logic high input thresholds, EN and EN	XR33181/83	2			V
V _{IL}	Logic low input thresholds, EN and EN	XR33181/83			0.4	V
I _{ENLEAK}	Enable pin leakage	XR33181/83	-10		10	μΑ
V _{OH}	Receiver output high voltage, RO	I _{OUT} = -4mA, XR33180/81/83	V _{CC} - 0.4			V
V _{OL}	Receiver output low voltage, RO	I _{OUT} = 4mA, XR33180/81/83			0.4	V
V _{OH}	Receiver output high voltage, RO	$3.0V \le V_L \le 5.5V$, $I_{OUT} = -4mA$ $1.65V \le V_L \le 3.0V$, $I_{OUT} = -1mA$, XR33184	V _L - 0.4			V
V _{OL}	Receiver output low voltage, RO	$3.0V \le V_L \le 5.5V$, $I_{OUT} = 4mA$ $1.65V \le V_L \le 3.0V$, $I_{OUT} = 1mA$, XR33184			0.4	V
I _{OSC}	Receiver output short-circuit current	$0V \le V_{RO} \le V_L$	-120		120	mA
I _{OZR}	High-Z receiver output current	$0V \le V_{OUT} \le V_{CC}$, XR33180/81/83 $0V \le V_{OUT} \le V_{L}$, XR33184	-1		1	μА
Thermal Char	acteristics					
T _{TS}	Thermal shutdown temperature			168		°C
T _{TSH}	Thermal shutdown hysteresis	shutdown hysteresis		15		°C
Receiver AC (Characteristics					
t _{RPLH}	Receiver propagation delay, low to high				15	ns
t _{RPHL}	Receiver propagation delay, high to low	$C_L = 15pF$, $V_{ID} = \pm 2V$, V_{ID} rise and fall times <15ns, Figure 4			15	ns
It _{RPLH} - t _{RPHL} I	Receiver propagation delay skew				2	ns
	Propagation delay matching, device to device ⁽¹⁾	Part to part comparisons must have the same supply conditions and temperature difference ≤ 30°C (max)			8	ns
	Maximum data rate ⁽¹⁾	C _L = 15pF, Duty Cycle 40 to 60%	52			Mbps
t _{RZH}	Receiver enable to output high				500	ns
t _{RZL}	Receiver enable to output low	C 15pF D 1K0 Figure 5			500	ns
t _{RHZ}	Receiver disable from output high	$C_L = 15pF$, $R_L = 1K\Omega$, Figure 5			500	ns
t _{RLZ}	Receiver disable from output low				500	ns

NOTE:

1. Guarenteed by design.

Pin Configuration

Pin Functions

	Pin Number				T	Description
XR33180	XR33181	XR33183	XR33184	Pin Name	Туре	Description
1	1	1	1	VCC	Supply	Power supply, bypass with 0.1µf capacitor
2	2	2	2	GND	Supply	Ground
3	3	3	3	RO	Output	Receiver output: if $(V_A-V_B) \ge -50$ mV, RO is high if $(V_A-V_B) \le -200$ mV, RO is low
4	4	4	4	В	Bus Input	±15KV ESD protected, RS-485/RS-422 inverting receiver input
-	5	-	-	EN	Input	Receiver output enable: when EN is low, RO is disabled, high impedance when EN is high, RO is enabled
-	-	5	-	ĒN	Input	Receiver output enable: when EN is high, RO is disabled, high impedance when EN is low, RO is enabled
-	-	-	5	VL	Supply	Logic interface power supply
5	6	6	6	А	Bus Input	±15KV ESD protected, RS-485/RS-422 non-inverting receiver input

Pin Functions (Continued)

Receiving					
Inp	Output				
RE	V _A - V _B	RO			
0	≥ -50mV	1			
0	≤ -200mV	0			
0	Open/shorted/idle	1			
1	Х	High-Z			

Functional Block Diagrams

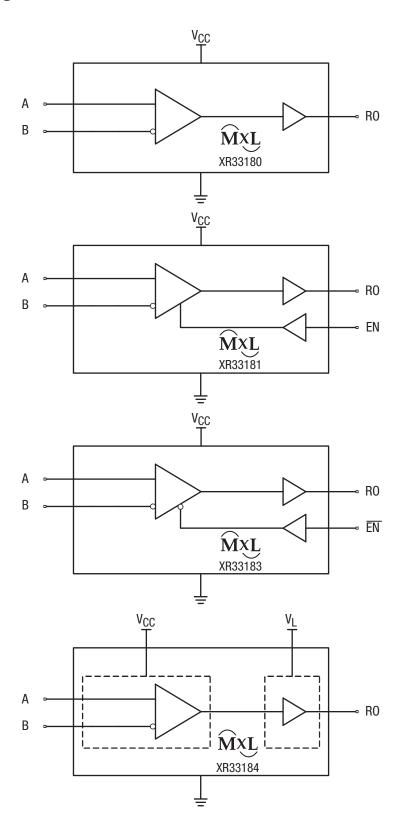


Figure 2. Functional Block Diagrams

Applications Information

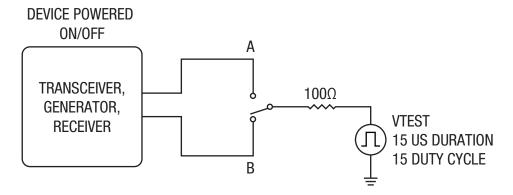


Figure 3. Transient Overvoltage Test Circuit

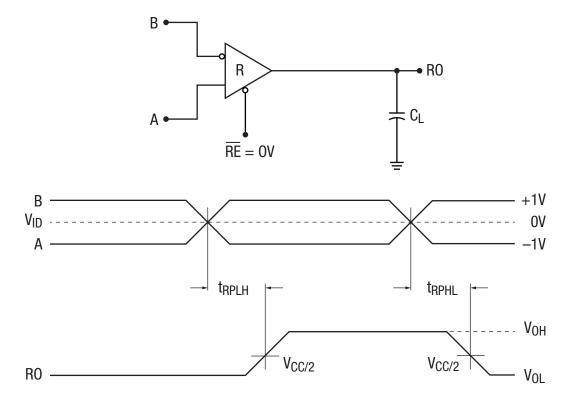


Figure 4. Receiver Propagation Delay Test Circuit and Timing Diagram

Applications Information (Continued)

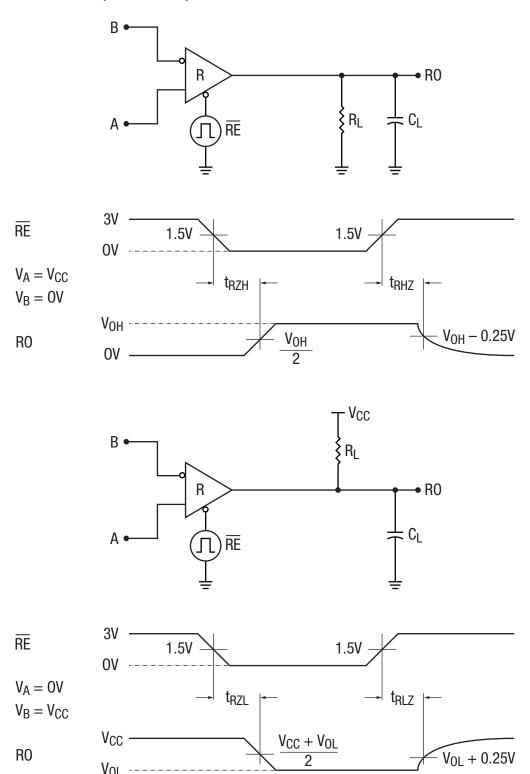


Figure 5. Receiver Enable and Disable Test Circuits and Timing Diagrams

Applications Information (Continued)

The XR3318x RS-485/RS-422 device is part of MaxLinear's high performance serial interface product line. The analog bus pins can survive direct shorts up to ±18V and are protected against ESD events up to ±15kV.

Enhanced Failsafe

Ordinary RS-485 differential receivers will be in an indeterminate state whenever the data bus is not being actively driven. The enhanced failsafe feature of the XR3318x guarantees a logic-high receiver output when the receiver inputs are open, shorted or when they are connected to a terminated transmission line with all drivers disabled. In a terminated bus with all transmitters disabled, the receivers' differential input voltage is pulled to 0V by the termination. The XR3318x interprets 0V differential as a logic high with a minimum 50mV noise margin while maintaining compliance with the RS-485 standard of ±200mV. Although the XR3318x does not need failsafe biasing resistors, it can operate without issue if biasing is used.

±15kV ESD Protection

ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The receiver inputs of the XR3318x have extra protection against static electricity. MaxLinear uses state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation and powered down. After an ESD event, the XR3318x keeps operating without latch-up or damage.

ESD protection can be tested in various ways. The receiver inputs of the XR3318x are characterized for protection to the following limits:

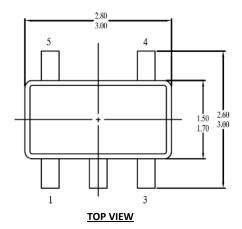
- ±15kV HBM (Human Body Model), bus pins
- ±15kV IEC 61000-4-2 air discharge, bus pins
- ±8kV IEC 61000-4-2 contact discharge, bus pins
- ±4kV using the Human Body Model, all other pins

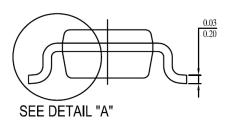
ESD Test Conditions

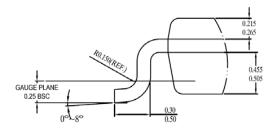
ESD performance depends on a variety of conditions. Contact MaxLinear for a reliability report that documents test setup, methodology and results.

Maximum Number of Receivers on the Bus

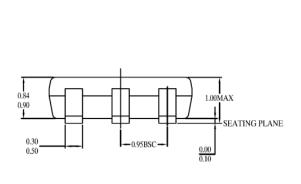
The standard RS-485 receiver input impedance is $12k\Omega$ (1 unit load). A standard driver can drive up to 32 unit loads. The XR3318x receiver has a 1/4th unit load receiver input impedance of $48K\Omega$, allowing up to 128 receivers to be connected in parallel on a communication line. Any combination of the XR33180/81/83/84's and other RS-485 receivers up to a total of 32 unit loads may be connected to the line.


Product Selector Guide


Part Number	Data Rate	Receiver Enable	Nodes On Bus	V _L Pin	Package	
XR33180		No		No	5-pin TSOT23	
XR33181	FOMbro	Yes (active high)	100	No		
XR33183	52Mbps	Yes (active low)	128	No	6-pin TSOT23	
XR33184		No		Yes		


Mechanical Dimensions

5-Pin TSOT23



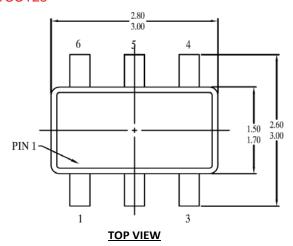
SIDE VIEW-1

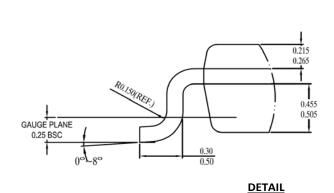
DETAIL "A"

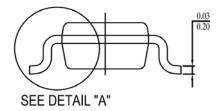
SIDE VIEW - 2

TYPICAL RECOMMENDED LAND PATTERN

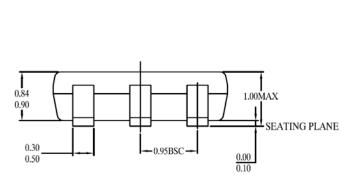
- 1. All dimensions are in Millimeters
- 2. Dimensions and tolerance per Jedec MO-193

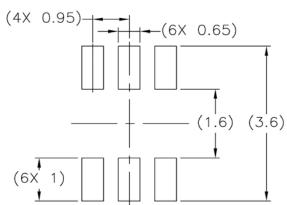

Drawing No. : POD - 00000076


Revision: A.1



Mechanical Dimensions (Continued)


6-Pin TSOT23



SIDE VIEW-1

TYPICAL RECOMMENDED LAND PATTERN

11/12

- 1. All dimensions are in Millimeters
- 2. Dimensions and tolerance per Jedec MO-193

Drawing No. : POD - 00000077

Revision: A.1

Ordering Information(1)

Part Number	Additional Feature	Operating Temperature Range	Lead-Free	Package	Packaging Method		
XR33180ESBTR	-			5-pin TSOT23			
XR33181ESBTR	Active High Enable	-40°C to 125°C Yes ⁽²⁾					
XR33183ESBTR	Active Low Enable		Yes ⁽²⁾	6-pin TSOT23	Tape and Reel		
XR33184ESBTR	Logic Level Supply, V _L						
XR33180ESBEVB		^					
XR33181ESBEVB							
XR33183ESBEVB		Evaluation Board					
XR33184ESBEVB							

NOTE:

- 1. Refer to www.exar.com/XR33180, www.exar.com/XR33184, <a href="www.exar.com/www.exa
- 2. Visit www.exar.com for additional information on Environmental Rating.

Revision History

Revision	Date	Description
1A	June 2016	Initial Release
1B	August 2016	Update tape and reel quantity in Ordering Information table
1C	February 2018	Update to MaxLinear logo. Update format and Ordering Information format. Moved ESD ratings to page 2.

Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598

www.maxlinear.com

High Performance Analog:

1060 Rincon Circle San Jose, CA 95131 Tel.: +1 (669) 265-6100 Fax: +1 (669) 265-6101

Email: serialtechsupport@exar.com

www.exar.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.

© 2016 - 2018 MaxLinear, Inc. All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Exar:

XR33184ESBEVB XR33181ESBEVB XR33180ESBEVB XR33183ESBEVB

MaxLinear:

XR33181ESBTR XR33180ESBTR XR33184ESBTR XR33183ESBTR